

ARTHI.G1, JAYASHREE.R2, SOWMYA.M3 1 | P a g e

Abstract— The widespread use and increasing capabilities of

mobile devices are making them a viable platform for offering

mobile services. However the increasing resource demands of

mobile services and the inherent constraints of mobile devices

limit the quality and type of functionality that can be offered,

preventing mobile devices from exploiting their full potential as

reliable service providers. Computation offloading offers mobile

devices the opportunity to transfer resource–intensive

computation to more resourceful computing infrastructures. In

this paper we present a framework for cloud assisted mobile

service provisioning to assist mobile devices in delivering reliable

services. It also enables the mobile provider to delegate the cloud

infrastructure to forward the service response directly to the user

when no further processing is required by the provider.

I. INTRODUCTION

In the last decade we have seen, and continue to see, a wide

adoption of advanced mobile phones, called smart phones.

These smart phones typically have a rich set of sensors and

radios, a relatively powerful mobile processor as well as a

substantial amount of internal and external memory. A wide

variety of operating systems have been developed to manage

these resources, allowing programmers to build custom

applications. Centralized market places, like the Apple App

Store and the Android Market, have eased the publishing of

applications. Hence, the number of applications has exploded

over the last several years – much like the number of web

pages did during the early days of the World Wide Web – and

has resulted in a wide variety of applications, ranging from

advanced 3D games, to social networking integration

applications, navigation applications, health applications and

many more. Not only has the number of third-party

applications available for these mobile platforms grown

rapidly – from 500 to 185,000+ applications within two years

for the Apple App Store –, but also the smart phones’

processor speed increased along with its memory size, the

screen resolution and the quality of the available sensors.

Today’s smart phones offer users more applications, more

communication bandwidth and more processing, which

together put an increasingly heavier burden on its energy

usage, while advances in battery capacity do not keep up with

the requirements of the modern user. Recently, it has been

rediscovered that offloading computation using the available

communication channels to remote cloud resources can help to

reduce the pressure on the energy usage.

Furthermore, offloading computation can result in significant

speedups of the computation, since remote resources have

much more compute power than smart phones.

 In this paper we present a framework for

computation offloading. The framework is targeted at the

Android platform, since Android provides an application

model that fits well for computation offloading. The

framework offers a very simple programming model that is

prepared for mobile environments, such as those where

connectivity with remote resources suddenly disappears. It

supports local and remote execution and it bundles both local

and remote code in a single package.

The primary objective of the proposed system is to develop

a framework to

 Perform cloud assisted mobile service provisioning

to extend the capabilities of smart mobile devices and

to store the results of the computation in a cloud so

that it can be retrieved whenever needed.

 Perform dynamic offloading of user task so that

resource intensive computations can be performed in

a more resourceful infrastructure.

 Provide the facility to share the results of the

computation over the social media by connecting to

the applications available in the user mobile.

II. BACKGROUND

A Computation Offloading Framework for

Efficient Energy Usage in Smart Mobile

Devices through Mobile Cloud Computing

ARTHI. G1, JAYASHREE R2, SOWMYA. M3

Department of Information Technology

Easwari Engineering College

ARTHI.G1, JAYASHREE.R2, SOWMYA.M3 2 | P a g e

The framework proposed in this paper is based on the concept

of mobile cloud computing. The framework is develop as an

android application that also uses the open source framework

apache tomcat, J2EE Technologies. Android is an open source

platform including an operating System, middleware and key

applications and is targeted at smart phones and other devices

with limited resources. Android has been developed by the

Open Handset Alliance, in which Google is one of the key

participants. Android applications are written in Java and then

compiled to Dalvik byte code and run on the Dalvik Virtual

Machine.

A. Android Application Components

 The main components of Android applications can be

categorized into Activities, Services, Content Providers, and

Broadcast Receivers, which all have their own specific

lifecycle within the system. Activities are components that

interact with the user, they contain the user interface and do

basic computing. Services should be used for CPU or network

intensive operations and will run in the background; they do

not have graphical user interfaces. Content Providers are used

for data access and data sharing among applications. Finally,

Broadcast Receivers are small applications that are triggered

by events which are broadcasted by the other components in

the system.

For computation offloading, we focus on activities and

services, because the separation between the large

computational tasks in the services and the user interface tasks

in the activities form a natural basis for the Cuckoo

framework. We will now have a closer look at how activities

and services communicate in Android.

B. Android IPC

When a user launches an application on a device running

the Android operating system, it starts an activity. This

activity presents a graphical user interface to the user, and is

able to bind to services. It can bind to running services or start

a new service. Services can be shared between multiple

activities. Once the activity is bound to the running service, it

will communicate with the service through inter process

Communication, using a predefined interface by the

programmer and a stub/proxy pair generated by the Android

compiler. Service interfaces are defined in an interface

definition language called AIDL. Service methods are invoked

by calling the proxy methods. The Android IPC also supports

call backs, so that the service can invoke a method on the

activity, allowing for asynchronous interfaces between

activities and services.

C. Android Application Development

Android applications have to be written in the Java

language and can be written in any editor. However, the

recommended and most used development environment for

Android applications is Eclipse [7], for which an Android

specific plugin is available [2].Eclipse provides a rich

development environment, which includes syntax

highlighting, code completion, a graphical user interface, a

debugging environment and much more convenient

functionality for application developers. The build process of

an Android application will be automatically triggered after

each change in the code, or explicitly by the developer. The

build process will invoke the following builders in order:

• Android Resource Manager generates a Java file to ease the

access of resources, such as images, sounds and layout

definitions in code.

• Android Pre Compiler generates Java files from AIDL files

• Java Builder compiles the Java source code and the

generated Java code

• Package Builder bundles the resources, the compiled

code and the application manifest into a single file After a

successful build, an Android package file (.apk) is created.

D. Computation Offloading

A basic computation-offloading system is composed of a

client component running on the mobile device and a server

component running in the cloud. The client component has

three major functions. First, it monitors and predicts the

network performance of the mobile device. Second, it tracks

and predicts the execution requirements of mobile applications

in terms of input/output data requirements and execution time

on both the mobile device and the cloud. Third, using this

information the client component chooses some portions of

the computation to execute in the cloud so that the total

execution time is minimized. The server component executes

these offloaded portions immediately after receiving them and

returns the results back to the client component so that the

application can be resumed on the mobile device.

Fig. 1. An abstract view of cloud-assisted mobile service architecture,

ARTHI.G1, JAYASHREE.R2, SOWMYA.M3 3 | P a g e

Showing possible interacting entities and context information, where B
is the link bandwidth and din and dout represent the amount of data
exchange over a link in both directions.

Computation offloading trades off communication cost for

computation gain. Previous systems usually assume stable

network connectivity and adequate cloud computation

resources. However, in mobile environments a mobile device

may experience varying or even intermittent connectivity,

while cloud resources may be temporarily unavailable or

occupied. Thus, the communication cost may be higher, while

the computation gain will be lower. Moreover, the network

and execution prediction may be inaccurate, causing the

performance of these systems to be degraded. Cloud

Computation Resources Cloud computation resources are

usually provided in the form of virtual machine (VM)

instances. To use a VM instance, a user installs an OS on the

VM and starts it up, both incurring delay. VM instances are

leased based on a time quanta. e.g., Amazon EC2 uses a one

hour lease granularity. If a VM instance is used for less than

the time quanta, the user must still pay for usage. A cloud

provider typically provides various types of VM instances

with different properties and prices. This server component

needs to be launched at the time the offloading request is made

and terminated when the required computation is complete.

 Fig. 2. The architecture of the cloud-assisted mobile service
 provisioning.

The lifetime of the server component is typically much less

than the lease quantum used by the cloud service provider. An

important question we consider in our system design is how to

ensure there is enough VM capacity available to handle the

mobile computation load without needing to always launch

VM instances on-demand and incur long setup time.

E. Mobile Cloud Computing:

Mobile Cloud Computing (MCC) is the combination

of cloud computing, mobile computing and wireless

networks to bring rich computational resources to mobile

users, network operators, as well as cloud computing

providers. The ultimate goal of MCC is to enable execution

of rich mobile applications on a plethora of mobile devices,

with a rich user experience. MCC provides business

opportunities for mobile network operators as well as cloud

providers. More comprehensively, MCC can be defined as a

rich mobile computing technology that leverages unified

elastic resources of varied clouds and network technologies

toward unrestricted functionality, storage, and mobility to

serve a multitude of mobile devices anywhere, anytime

through the channel of Ethernet or Internet regardless of

heterogeneous environments and platforms based on the pay-

as-you-use principle. MCC uses computational augmentation

approaches (computations are executed remotely instead of on

the device) by which resource-constraint mobile devices can

utilize computational resources of varied cloud-based

resources.] In MCC, there are four types of cloud-based

resources, namely distant immobile clouds, proximate

immobile computing entities, proximate mobile computing

entities, and hybrid (combination of the other three

model). Giant clouds such as Amazon EC2 are in the distant

immobile groups whereas cloudlet or surrogates are member

of proximate immobile computing entities. Smart phones,

tablets, handheld devices, and wearable computing devices are

part of the third group of cloud-based resources which is

proximate mobile computing entities.

F. Apache Tomcat

Apache Tomcat, often referred to as Tomcat Server, is an

open-source Java Servlet Container developed by the Apache

Software Foundation (ASF). Tomcat implements several Java

EE specifications including Java Servlet, JavaServer

Pages (JSP), Java EL, and WebSocket, and provides a

"pure Java" HTTP web server environment in which Java code

can run. Tomcat is developed and maintained by an open

community of developers under the auspices of the Apache

Software Foundation, released under the Apache License 2.0

license, and is open-source software.Apache Tomcat version

7.0 implements the Servlet 3.0 and JavaServer Pages

2.2 specifications from the Java Community Process, and

includes many additional features that make it a useful

platform for developing and deploying web applications and

web services.

G. J2EE

J2EE is a platform-independent, Java-centric environment

from Sun for developing, building and deploying Web-based

enterprise applications online. The J2EE platform consists of a

set of services, APIs, and protocols that provide the

functionality for developing multitiered, Web-based

applications.

https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/Mobile_computing
https://en.wikipedia.org/wiki/Wireless_network
https://en.wikipedia.org/wiki/Wireless_network
https://en.wikipedia.org/wiki/Rich_mobile_application
https://en.wikipedia.org/wiki/Mobile_cloud_computing#cite_note-:0-2
https://en.wikipedia.org/wiki/Cloudlet
https://en.wikipedia.org/wiki/Servlet_container
https://en.wikipedia.org/wiki/Apache_Software_Foundation
https://en.wikipedia.org/wiki/Apache_Software_Foundation
https://en.wikipedia.org/wiki/Java_Platform,_Enterprise_Edition
https://en.wikipedia.org/wiki/Java_Platform,_Enterprise_Edition
https://en.wikipedia.org/wiki/Java_Servlet
https://en.wikipedia.org/wiki/JavaServer_Pages
https://en.wikipedia.org/wiki/JavaServer_Pages
https://en.wikipedia.org/wiki/Unified_Expression_Language
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Web_server
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Apache_License
https://en.wikipedia.org/wiki/Open-source_software
http://wiki.apache.org/tomcat/Specifications
http://www.jcp.org/
http://www.webopedia.com/TERM/P/platform.html
http://www.webopedia.com/TERM/J/Java.html
http://www.webopedia.com/TERM/A/API.html
http://www.webopedia.com/TERM/P/protocol.html

ARTHI.G1, JAYASHREE.R2, SOWMYA.M3 4 | P a g e

Some of the key features and services of J2EE:

 At the client tier, J2EE supports pure HTML, as well

as Java applets or applications. It relies on Java

Server Pages and servlet code to create HTML or

other formatted data for the client.

 Enterprise JavaBeans (EJBs) provide another layer

where the platform's logic is stored. An EJB server

provides functions such as threading, concurrency,

security and memory management. These services

are transparent to the author.

 Java Database Connectivity (JDBC), which is the Java

equivalent to ODBC, is the standard interface for

Java databases.

 The Java servlet API enhances consistency for

developers without requiring a graphical user interface

III. IMPLEMENTATION

A. System Modules

 Our proposed system presents a distributed mobile service

provisioning framework that reduces the burden on mobile

resources through the offloading of resource intensive

processes to the cloud. An offloading decision model is

proposed to determine whether or not remote execution of a

resource request brings performance improvements. The

decision making involves selecting the best available resource

provider according to the resource availability. This

framework dynamically allocates resource providers to offload

tasks to best suit the task requirements and environment

context. The decision maker determines the best execution

plan that achieves highest performance gain. The proposed

system can be split into four modules.

 User Registration and Task Delegation
 In this module the user first registers himself before

assigning the task to the service provider. After registration

the user delegates the task to the service provider.

 Offloading Decision Making
 In this module the service provider selects the node to

which the task has to be offloaded. The decision making

involves selecting the best available resource provider

according to the resource availability and performance

measures. The decision maker determines the best execution

plan that achieves the highest performance gain.

 Output Retrieval and Cloud Storage
 In this module the results of the computation are sent back

to the user mobile directly after the task is completed by the

offload node and a copy of the result is stored in the cloud for

future usage.

 Social Media Sharing
 This module provides the facility to the user to share the

results of the computation over the social media using an

application of his/her choice. This module lists the available

applications on the user mobile and allows the user to select

one among them to share the results.

B. Implementation Snapshot:

http://www.webopedia.com/TERM/C/client.html
http://www.webopedia.com/TERM/H/HTML.html
http://www.webopedia.com/TERM/A/applet.html
http://www.webopedia.com/TERM/J/JSP.html
http://www.webopedia.com/TERM/J/JSP.html
http://www.webopedia.com/TERM/S/servlet.html
http://www.webopedia.com/TERM/E/Enterprise_JavaBeans.html
http://www.webopedia.com/TERM/J/JDBC.html
http://www.webopedia.com/TERM/O/ODBC.html
http://www.webopedia.com/TERM/G/Graphical_User_Interface_GUI.html

ARTHI.G1, JAYASHREE.R2, SOWMYA.M3 5 | P a g e

ARTHI.G1, JAYASHREE.R2, SOWMYA.M3 6 | P a g e

IV. FUTURE WORK

In our future work we will improve the intelligence of the

Offloading framework by improving the heuristics and the

addition of more context information, such that the estimation

whether or not offloading is going to save energy or increase

the computation speed will be more accurate. Although

computation offloading can speed up computation and save

energy, it is not guaranteed that it does. Another direction of

our future work is to investigate which security measures need

to be taken to secure the communication between the smart

phone and the remote cloud resources. We also have to pay

attention to the security implications of multiple users using a

single remote resource, running foreign code on the remote

resources, and making sure that remote services cannot disturb

the working of other remote services.

V. CONCLUSION

In this paper we have presented a framework for

computation offloading for smart phones, a recently

rediscovered technique, which can be used to reduce the

energy consumption on smart phones and increase the speed

of compute intensive operations. The framework integrates

with the popular open source Android framework and the

Eclipse development tool. It provides a simple programming

model, familiar to developers, that allows for a single interface

with a local and a remote implementation.

REFERENCES

[1] 1. Dirk Bade, Gabriel Orsini, Winfried Lamersdorf “

Context-Aware Computation Offloading for Mobile

Cloud Computing : Requirements Analysis, Survey and

Design Guideline” in The 12th International Conference

on Mobile Systems and Pervasive Computing, (MobiSPC

2015).

[2] 2. Roelof Kemp, Nicholas Palmer, Thilo Kielmann and

Henri Bal, “Cuckoo: a Computation Offloading

Framework for Smart phones”, in The Second

International ICST Conference, MobiCASE 2010, Santa

Clara, CA, USA, October 25-28, 2010.

[3] 3. Khadija Akherfi a, Micheal Gerndt a, Hamid Harroud

b, “Mobile cloud computing for computation offloading:

Issues and challenges”, Applied Computing and

Informatics (2017).

[4] 4. Khalid Elgazzar, Patrick Martin, and Hossam S.

Hassanein, Senior Member, IEEE, “Cloud-Assisted

Computation Offloading to

Support Mobile Services”, IEEE transactions on cloud

computing, vol. 4, no. 3, July-september 2016.

